Table 3A.—Free-air resultant winds based on rawin observations made near 0300 G. C. T., during the year 1949. Directions given in degrees from north ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$). Speeds in meters per second | | Albuquer-
que,
N. Mex.
(1,636 m.) | | | Big Spring,
Tex.
(774 m.) | | | Bi | Bismarck,
N. Dak.
(505 m.) | | | | c | Caribou,
Maine
(191 m.) | | to | Charleston, S. C. (13 m.) | | Co | Columbia,
Mo.
(237 m.) | | Grand
Junction,
Colo.
(1,473 m.) | | Greens-
boro, N. C.
(275 m.) | | ıs-
. C. | н | Hatteras,
N. C.
(3 m.) | | tional Min | | Interna-
onal Falls,
Minn.
(358 m.) | | Littl
ck, A
80 m | ttle
, Ark.
m.) | | dford,
reg.
1 m.) | | | |----------------------------------|---|---|--|---|---|--|---|--|---|---|---|---|--|--|---|--|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|--| | Altitude
(meters)
m. s. l. | Observations | - 1 | | Observations | Direction | Speed | Observations | Direction | Speed | Observations | Direction | | Observations | Direction | Bpeed | Observations | Direction | Speed | | Direction | Speed | Observations | Direction | Speed | Observations | Direction | Speed | | Direction | | | Direction | Speed | Observations | Direction | ı I | | Direction | | Surface | 365
364
364
362
361
354
344
300
256 | 131
 | 1. 2
2. 1
3. 6
4. 7
6. 5
7. 6
8. 8
10. 1
12. 3 | 362
361
361
360
360
360
358
348
332
309 | 141
159
185
214
234
248
262
263
260
261 | 3. 1
4. 9
5. 0
4. 7
5. 0
6. 8
8. 8
11. 9 | 363
358
356
353
351
350
344
338
330
289
243 | 300
291
299
293
293
291
287
282
271
264 | 0. 8
2. 1
4. 2
6. 0
7. 5
8. 8
11. 1
12. 4
14. 1
16. 3
17. 3 | 361
355
354
353
354
354
351
349
352
347
335
296
216 | 118
130
140
152
172
193
213
242
247
251
255
261
270 | 2. 5
5. 9
5. 8
2. 5
2. 5
7. 1
10. 8
13. 6
12. 3 | 365
365
365
360
355
348
346
336
320
305
256 | 267
265
274
275
275
274
271
268
268
268 | 1. & 4. 4 6. 1 7. 2 8. 3 9. 7 11. 1 13. 4 15. 1 16. 8 18. 8 | 365
363
361
360
360
357
353
344
329
311
265
223 | 210
219
236
254
263
268
268
268
270
276
281 | 0. 4
2. 0
2. 1
3. 3
4. 1
5. 1
6. 0
7. 4
8. 6
9. 8
10. 8 | 4 364
0 364
5 361
3 360
1 358
1 355
0 351
4 342
5 330
5 316
5 270 | 145
198
234
252
264
270
274
279
278
277 | 0.7
2.6
4.0
5.3
6.4
7.3
8.1
9.6
11.6
12.9
14.9 | 365
363
363
363
364
362
357
351
305
236 | 60
230
235
245
260
265
269
272
271 | 0. 2
1. 1
2. 4
3. 6
5. 3
7. 2
9. 0
11. 4
12. 8 | 364
361
360
358
357
356
354
346
340
321
291
237 | 282
243
251
261
266
270
269
269
270
273
272
274 | 0.3
1.6
3.6
4.7
5.6
6.8
7.9
9.7
11.4
12.7
15.4
16.6 | 365
363
360
353
347
343
337
322
312
292
249
182 | 245
241
250
261
268
267
268
268
271
273
277
282 | 0. 7
2. 5
3. 3
4. 1
5. 0
7. 0
9. 2
10. 7
11. 8
13. 0
12. 1 | 365
362
362
359
359
356
356
343
330
319
278
221
142 | 246
238
263
281
281
285
288
283
276
273
274
273 | 0. 7
1. 8
4. 1
5. 3
6. 5
7. 7
9. 0
11. 4
13. 9
15. 4
18. 1
20. 1
22. 1 | 365
360
359
356
353
345
342
332
323
307
274 | 218
174
214
233
245
251
255
259
262
260
254 | 0. 4
2. 1
3. 1
4. 1
5. 1
6. 1
7. 3
9. 0
10. 1
11. 3
14. 3 | 364
360
359
357
355
348
347
342
328
304
241 | 323 1.6
320 2.0
305 2.3
276 2.1
260 2.6
259 3.8
256 4.5
267 6.0
272 7.9
272 8.8
258 10.9 | | | N
(1 | liam
Fla.
12 m. | i,
) | Nas
I | ntuc
Mass
13 m | ket, | N ₅ | shvi
Fenr
80 п | ille,
1.
1.) | 0 | New
rlean
La.
6 m. | s, | Os | aklar
Calif
(8 m. | nd,
) | Ol
Cii | rlaho
ty, O
392 m | ma
kla.
1.) | Rai
S
(g | pidC
. Da
980 m | ity,
k.
1.) | St. | Clo
Minr
18 m | ud,
i. | ton
(2 | an A
io, T
142 m | n-
'ex. | Sa; | n Jus
P. R.
28 m. | in, | S
N
(7 | ante
faria
'alif
'2 m | a,
., | Sa
I | ult S
Marie
Mich
21 m | te. | Spc
W
(72 | kane,
ash.
8 m.) | | Surface | 365
364
364
364
365
365
360
356
354
341
321
280
203 | 80
105
105
99
105
127
169
248
269
274
279
281
297 | 1. 2
3. 5
3. 2
2. 4
1. 7
1. 1
1. 5
3. 3
4. 8
8. 6
9. 7
1. 8 | 352
349
347
346
340
337
333
322
304
283
178 | 257
262
274
274
273
271
270
269
268
269
272 | 1. 2
4. 7
5. 4
6. 3
8. 0
9. 2
10. 3
12. 3
14. 1
15. 0 | 365
363
362
356
354
353
350
342
329
309
257 | 208
207
228
249
259
263
267
271
270
268 | 0. 5
2. 2
3. 8
4. 6
6. 0
7. 2
8. 8
10. 7
12. 1
12. 8 | 363
360
357
358
359
352
351
344
335
322
278
230 | 113
144
170
208
238
248
254
259
261
262
263
265 | 0.8
1.9
1.3
1.3
2.3
3.5
4.5
7.0
9.2
11.0
3.3
4.9 | 365
364
364
363
363
363
361
356
346
332
295
246 | 277
288
289
292
294
294
291
290
289
290
280
278 | 3. 0
3. 1
2. 8
2. 3
2. 1
2. 6
3. 3
4. 6
5. 9
7. 7
9. 7
11. 4 | 353
330
325
329
335
335
334
320
275
243 | 138
150
192
226
248
255
262
269
271
271
271 | 2. 0
4. 0
4. 4
5. 1
5. 9
6. 8
7. 7
8. 6
10. 3
12. 3
14. 0 | 359
356
357
355
354
345
322
309
3299
3258 | 295
290
291
290
288
287
284
283
280
257 | 0. 9
3. 0
4. 5
6-2
7. 6
9. 9
11. 2
13. 0
9. 5 | 362
359
358
349
341
333
324
309
269
225 | 322
238
256
267
273
286
285
282
278
278
276
273 | | | 93
119
143
174
210
235
248
256
259
260
264 | 2. 6
4. 2
4. 5
3. 4
3. 1
3. 9
4. 5
6. 4
8. 3
10. 0
13. 1 | 364
361
359
355
355
353
352
349
344
336
322
315
298
249 | 98
90
90
89
87
87
85
80
66
48
299
285
280
282 | 2. 9
6. 4
6. 6
5. 5
5. 2
4. 8
2. 5
2. 0
3. 5
9. 3
4. 4
2. 2 | 365
363
364
363
362
361
361
357
351
341
316
279
227
179 | 281
331
337
351
341
319
304
293
284
285
280
266
263
264 | 1. 6
2. 7
2. 6
2. 1
2. 8
3. 7
5. 4
7. 0
9. 7
12. 6
13. 9 | 362
362
358
351
346
340
335
321
301
273 | 306
250
259
268
278
281
276
279
282
279 | 0. 6
1. 8
4. 4
5. 9
7. 0
8. 3
0. 5
12. 0
13. 4
14. 6 | 357
354
349
348
330
334
326
314
293
230 | 205 1.7
222 3.1
241 4.2
251 4.7
260 4.8
267 5.6
269 7.7
272 9.8
272 10.6
260 11.6 | | | | | | | | | | | | | | | | | ato(| osh
Was
33 m | Islandh. | d, | | | | | | | | | | | | | | | | | 7 | Catoo
V
(3) | sh Is
Vash
33 m. | land, | | Surface | | | | | | | | | | | | | | | 351
344
338
337
338
336
331
321 | 16
22
23
23
24
25
26
26 | 6
9
6
9
9
7
2
4 | 1. 5
2. 2
2. 9
3. 4
4. 1
4. 9
5. 9
7. 8 | 8,0
10
12
14 | ,000
,000
,000
,000 | | | | | | | | | | | | | | | - | 307
289
245
189 | 266
266
277
266 | 10 1 | NOTE.—Resultants prepared from rawins at high altitudes are biased toward lower wind speeds. Values appearing in this table should therefore be used with caution when the number of observations missing is greater than three. See note following Table 3 in the June 1948 issue of the Monthly Weather Review. ## RIVER STAGES AND FLOODS FOR DECEMBER 1949 The highest crests since 1937 occurred along the Green River in Kentucky during December. Flooding elsewhere was mostly light except along the Wabash River where overflows were moderate. A serious flood threat was averted in the Puget Sound drainage by the onset of colder weather. Atlantic Slope drainage.—Precipitation averaged mostly below normal along the Atlantic Slope drainage during the last 3 months of 1949 except in Pennsylvania. Despite the deficient rainfall, rivers in the northern portion of the New England States were slightly higher at the end of the month than in the beginning due mostly to runoff from snowmelt. By the 31st most of the snow cover in the headwater areas had disappeared. General rains over the upper reaches of the Delaware River, together with some melting of the snow cover caused a sharp rise at Port Jervis, N. Y., and Trenton, N. J., on the 14th and 15th but flood stages were not reached. Light flooding occurred in the Graters Ford area for a few hours on the 27th due to heavy local rains over Perkiomen Creek. Mississippi System.—Upper Mississippi Basin.—Slight flooding occurred along the Illinois River at Morris, Ill., and along the Meramec in Missouri from the heavy rains which averaged slightly over 3 inches in the Illinois Basin and 1.75 inches in the Meramec Basin on the 21st and 22d. No damage resulted. The Upper Mississippi River at and above Dam 10 remained at near normal pool stage throughout December. The river was officially closed to navigation at LaCrosse, Wisc., on the 14th when it froze over from shore to shore. Upper pools No. 7 and 8 were frozen over with a thin coating of ice as early as the 9th. Ohio Basin.—A general rain beginning on the 10th and continuing through the 14th caused moderate to heavy rises in streams in the basin with the highest crests since 1937 on the Green River in Kentucky. The rainfall over the Green and Barren basins during this period averaged between 6 and 7 inches with one station reporting a total of 9.24 inches. Both streams were overflowing before the rainfall ceased and crested 8 to 13 feet above bankfull stage. Nearly an additional inch of rain on the 18th and 19th delayed as well as contributed to the crests downstream and slowed down the fall upstream. Sharp rises occurred in all the southern tributaries of the Ohio River but no flooding occurred except in the Little Kanawha at Glenville, W. Va. A considerable rise followed on the Ohio River. Dam 29 rose from a pool condition at 15 feet to a crest of 36 feet in 3 days, but flood stages were not exceeded anywhere on the Ohio River. On the 22d and 23d rains averaging over 2 inches covered the upper Wabash. These were followed by additional rain of about an inch over the entire basin on the 26th and 27th. The combined effect of these two storms produced moderate flooding at Wabash, Ind., and at all points from LaFayette, Ind., downstream to Mt. Carmel, Moderate rises occurred on practically all other tributaries, but no flooding occurred. No serious damage resulted, but some county and low lying State roads in the area from LaFayette, Ind., downstream were inundated for a short period. Rains were much lighter over the East and West Forks of the White but no flooding occurred except at Edwardsport, Ind. Lower Mississippi Basin.—Heavy rains (about 3 inches) near the middle of the month over the St. Francis Basin caused rises to within a few feet of flood stage at Fisk, Mo., and St. Francis, Ark. Additional rain on the 18th, 22d and 26th caused an additional rise at St. Francis, Ark., to above flood stage on the 29th which continued into January. Heavy rains on the 10th and 12th caused light flooding on the Coldwater River at Sarah, Miss., on the 12th and 13th. Little if any damage occurred as a result of the overflow. Rains over the Mississippi Valley were sufficient to cause a rise of approximately 20 feet at stations on the Mississippi River during the last half of the month but no flooding occurred. West Gulf of Mexico drainage.—Light flooding occurred on the Sabine River at Bon Weir, Tex., on the 19th and 20th due to heavy rain on the 17th. The river was about 4 feet below bankfull stage before this rain occurred. The Trinity approached within one foot of bankfull stage at Liberty, Tex., on the 16th from the rain (2 to 3 inches) between the 9th and 15th in the lower Trinity basin. Puget Sound and Washington Coast drainage.—Light overflows occurred along the Chehalis and streams in the Puget Sound drainage from the heavy rain and melting snows during the last week in December. Rains occurred almost daily over western Washington from the 23d to the end of the month with excessive amounts ranging up to 1.5 inches on the 27th and 2.85 inches on the 28th in some basins. The snow line was estimated to be between 500 and 1,000 feet. Snowmelt was a considerable factor. According to State Highway Department reports, the snow depth on Snoqualmie Pass decreased from 80 inches on the 27th to 53 inches on the 28th and on Stevens Pass from 110 inches on the 27th to 90 inches on the 28th. Temperatures in the lower valleys reached 50°-56° from the 27th to the 29th and temperatures were slightly above freezing up to about 4,000 feet during this period. Colder weather and less rain on and after the 29th halted this serious flood threat. FLOOD STAGE REPORT FOR DECEMBER 1949 | · | | | | | | | | |---|----------------------|------------------|----------------|-------------------------|----------------|--|--| | River and station | Flood | Above
stages- | flood
dates | Crest 1 | | | | | | stage | From— | То— | Stage | Date | | | | ATLANTIC SLOPE DRAINAGE | Feet | | | Feet | | | | | Perkiomen Creek: Graters Ford, Pa | 8 | 27 | 27 | 10. 2 | 27 | | | | MISSISSIPPI SYSTEM Upper Mississippi Basin | | | | | | | | | •• | | | 00 | 10.0 | ~ | | | | Illinois: Morris, Ill | 13 | 23 | 23 | 13.8 | 23 | | | | Sullivan, Mo
Pacific, Mo | 11
11 | 23
23 | 23
24 | 12.0
13.5 | 23
24 | | | | Ohio Basin | | 1 | | | | | | | Little Kanawha: Glenville, W. Va
Barren: Bowling Green, Ky
Rolling Fork: Boston, Ky | 23
28 | 13
13
13. | 13
16
17 | 23. 1
36. 9
44. 5 | 13
14
15 | | | | Groon: | | İ | | | | | | | Mundfordville, Ky | 23
28 | 13
12 | 16
18 | 36.4
40.7 | 15
15 | | | | Lock No. 4, Woodbury, Ky | 33
34 | 12
15 | 22
29 | 46, 7
41, 1 | 16
23 | | | | West Fork: Edwardsport, Ind | 12 | / 13 | 13
30 | 12. 2
13. 8 | 13
24 | | | | Wabash:
Wabash, Ind | 12 | 23 | 30
23 | 14.8 | 22 | | | | Lafavette, Ind | i | { 22
28 | 25
29 | } 17.5 | 23 | | | | Covington, Ind. | 16 | 23 | 30 | 20.6 | 25 | | | | Montezuma, Ind
Terre Haute, Ind | 14 | 23 | (2) | 21.1
17.8 | 27
27
29 | | | | Hutsonville, IllVincennes, Ind | 16 | 29 | (2) | 20.9
17.5 | 29
31 | | | | Lower Mississippi Basin | 10 | 20 | | 1,,,, | | | | | Coldwater: Sarah, Miss | 18
18 | 12
29 | (3) | 19. 2
18. 5 | 13
31 | | | | WEST GULF OF MEXICO DRAINAGE | | | | | | | | | Sabine: Bon Weir, Tex | 17 | 19 | 20 | 17.3 | 19 | | | | PACIFIC SLOPE DRAINAGE | | | | | | | | | Chehalis Basin | i | | | | | | | | Satsop: Satsop, WashChehalis: | 34 | 28 | 28 | 34.8 | 28 | | | | Centralia, WashGrand Mound, Wash | 63
14. 5 | 28
29 | 29
29 | 64. 7
14. 8 | 28
29 | | | | Puget Sound | | | | | | | | | Snohomish: Snohomish, Wash
Snoqualmie: Tolt, Wash
Stillaguamish: Arlington, Wash | 23. 6
51. 5
16 | 28
28
28 | 28
28
28 | 26. 6
53. 7
17. 9 | 28
28
28 | | | | | | | | | | | | Provisional. Continued at end of month.